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COMPUTATION OF LOW SPEED VISCOUS FLOWS WITH HEAT ADDITION
Ashvin Hosangadl. and Charles L, Merkle®

The Pennsylvania State University

Department of Mechanical Engineering

|
|
v University Park, PA 16802
i

ABSTRACT

The use of implicit time dependent schemes for
the numerical solution of low speed, low Reynolds
number flows with heat additfon is investigated.
Stability analyses show that the errors introduced by
approximate factorizatfon give rise to ilnstability at
Reynolds numbers around 100. Specifically, it is the
cross-cderivative errors between the viscous and
inviscid terms that cause problems. When exact
inversion techniques are used, the system becomes
strongly stable and numerical experiments show rapid
convergence. Comparisons of outflow boundary
cond{tions show that viscous and {nviscid
formulations give fdentical results over a wide range
of Reynolds numbers when buoyancy is omitted, but
with buoyancy presert thre inviscid boundary
conditions are unstable. Flowfield results for a
range of low Reynolds conditions with and without
buoyancy are given to show the manner in which the
flowfield changes as these physical parameters are
varied.

INTRODUCTION

Time dependent procedures have come to be the
accepted method for the numerical solution of
compressible flows. The strengths of these methods
arise because they are easfly expressed in
generalized coordinates, they allow a single
procedure to be used for efther viscous or inviscid
flows, and they allow the use of central differences
for the convective terms even.when the {nviscid
ecuations are considered. Their capabilicies in
inviscid flows make them particularly suitable for
the important class of high Reynolds number viscous
flows, Recent publicationsi™® have reported
effective methods for extending these compressible
flow tecnniques to low Mach number conditions where
elgenvalue stiffness had heretofore precluded
convergence. The present paper looks at the
additional extenajon to low Reynolds number flows.
The physical problem used to demonstrate the low
Reynolds number conditions is that of strong heat
addition in a constant area duct. The source of this
problem arjises because of our interest in the
absorption of a laser beam by a flowing gaas.

The impaired convergence of time dependent
schemes at low Mach number is known to arise because
of the stiffness of the eigenvalues and the singular
behavior of the pressure gradient. Preconditioning
of the time derivativesl™3 has been shown to make the
convergence rate independent of Mach number, but a

rescaling of the pressure is necessaryu to ensure
convergence to tight tolerances at Mach numbers below
about 10~%, This rescaling is best accomplished by a
perturbation expansion of the equations of motlon"v6.
The presence of the source term due to buoyancy has
also been shown’ to require spectal treatment when
Froude numpers are small.
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The characteristics of time dependent schemes at
low Reynolds numbers have received less attention.
Although the diffusion provided by the viscous terms
should smooth the solution and provide enhanced
convergence, their presence can slow convergence or
even lead to diverpence when approximate
decompositions are used in conjunction with implicit
formulations. (The characteristics of approximately
ractoreda'9 methods are discussed herein a ;j compared
with results from direct inversion procedures.) In
addition, the effects of inflow and outflow boundary
conditions are studied to determine their effect on
convergence and solution accuracy as the Reynolds
number {s decreased.

PROBLEM FORMULATION AND EQUATICNS OF MOTION

As a test problem, we use the flow through a
vertical constant area duct with specified volumetric
heat addition to simulate laser absorption in a
flowing eaas. To parameterize the probiem, the heat
source, Qq, 13 chosen as the algebraic functicn,

Oy = P Min (20372 - 3re1, 1] (1)
where,
£ix,y) = [(x=x3)2 « (y-y2)2}7{(x=xp)2 « (y-yp)2} (2)

Here P {s a scaling parameter indicative of the
maximum heating rate and (x,, yz) and (xy, ¥p)
specify the coordinates adbout which the symmetric
heat addition is centered and (ts rate of decrease.
For the present calculations, only the peak heating
rate P was varied, Cross-sectional contours of the
constant heat addition curves along with the geometry
of the problem is given in Fig. 1.

The equations used to describe the very low
speed flows of interest here are obtajned by the same
Mach number expansion used i{n Ref. 4, Extension of
this expansion to the viscous terms shows that the
viscous dissipation function in the energy equation
may be neglected leaving only heat conduction terms
on the right-hand side and leads to no
simplifications in the right-hand side of the
momentum equations. The reduced equations in
generalized coordinates become:

ato‘athanr-nola(n R, 3)

3 ePee * Peadn

$ AR D amanmo (3

The notation used for the inviscid terms is the same
as that of Ref. 4 while the viscous notation is
simflar to that of Ref. 10 with the above-mentioned
simplification. The source term H contains both the
heat source term and the buoyancy term.

To solve Ean. 3 we use Euler implicit time
differencing for all terms except for the
crosa-derivatives on the right-hand siae, which are
differenced expliclitly. Central differencing in
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space 1s used for both the convective and diffusive
terms. The implicit formula%lon gives rise to a
large sparse, pentadiagonal matrix whose sclution was
attempted by the approximate factorization technique
as well as by an exact, direct tnversion procedure.

Approximate Factorization

The most common technique for solving impliclt
algorithms is the apgroxtmate factorization procedure
of Douglas and Gunn+:, 1In this approach, the
pentadiagonal matrix i{s approximated by two
tridiagonal matrices as,

-1
(S » AtBEA - AtBERzgaid)S

- - - %
(S + AtanB A:annnnana)ao AtR (%)

where R is the residual of the operator in Egn. 3
evaluated at the old time level, and S = I-DAt where
D is the Jacobian of H.

The approximate factorization 1s equivalent to
solving the original differential operator in Eqn. 3
with an additive error Wap given by,

R_3.J3 R 3J ~

¥ EEEE nann

2
AF = At [QEAQHB + 3

- 3R _3.J3B -3 (5)

§EEE n A")nﬂnnan"]AQ

[
Note this error includes terms of three kinds. There
are inviscid-inviscid operator products,
viscous-viscous operator products and
viscous-inviscid operator products. The
inviscid-inviscid terms are the familiar ones from
the Euler equations. These are well known to slow
convergence at high CFL's, but never cause
tnstabllity or divergence. Similar comments hold for
the viscous-viscous error term. In a pure diffusion
equatton (no convection) these terms will slow
convergence but the approximately factored scheme
remains unconditionally stable.

The existence of an unconditionally stabdble
factortzation for the inviscid terms alone and for
the diffusion terms alone does not, however,
guarantee unconditional stability for the combined
viscous-inviscid system because of the
viscous-inviscid error terms In Eqn. 5. Stability
analyses of the complete vector eguations shows that
the viscous-inviscid error terms can be strongly
destabilizing at moderate (order one) Reynolds
numbers. At high or very low Reynolds numbers, these
terms become negligible and have no effect. For our
specific problem, both stability analyvses and
numerical experiments showed that approximate
factorization was unstable at Reynolds numbers below
500 when the stiffness was removed from the inviscid
terms. Making the inviscid operators stiff deferred

. this instadbi{lity to lower Reynolds number, but the
stiffness then caused unacceptably slow convergence.
Thus, approximate factorization of the low Mach
number equations fails at low Reynolds numbers.

Direct Solution Procedures

Analysis of the AF scheme reveals its limited
usefulness at low Reynolds numbers. To underatand
the limitations of the approximate procedure and to
provide solutions to the problem of interest, we aiso
considered direct solutions of the operator in Eqn. 3.
for these solutions, the sparse pentadiagonal matrix
was partitioned as a block tridiagonal system which
was then solved by the matrix versjon of the standard
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The result requires considerable
machine storage but provides an extremely robust

Thomas algorithm.

solver as {s noted below. For a two-dimensional
probiem, both storage and CPU time are primarily
determined by the number of grid points {n the
smaller direction. Experimental checks on a scalar
processing machine snowed that when 20 to 30 grid
points were used in one direction, the direct
procedure gave converged solutions in about the same
time as approximate factorization, albeit, at vastly
different convergence rates. Thus, a grid of S0 x 25
will require nominally the same time for the direct
as for the AF procedure. Mors advanced sparse matrix
solution proceduresl? are available which would
reduce storage as compared with the present
tridiagonal procedure., These should also reduce the
CPU time requirement.

The advantage of the direct procedure is its
improved robustness and its rapid rate of convergence.
Its robustness is demonstrated by the fact that
converged solutions are obtained for the present
problem, while appropriate procedures fail. Its
rapid rate of converpence |3 most readlly
demonstrated by exampte. Figure 2 shows the
convergence rate of tne direct procedure for the
present problem for a series of different CFL's. At
8 CFL of 5, the direct procecure converges at about
the same rate as an approximate factorization scheme.
(The optimum CFL for AF schemes is around 5.) As CFL
13 increased, the convergence rate accelerates
rapidly. At a CFL of 50, convergence to machine
accuracy requires only 17 iterations and at 5000, tt
is further reduced to 11 time steps. Tests with
other grid sizes show that the rate of convergence is
independent of the number of grids or even of grid
stretching although the time per {teration is
strongly related to the number of grids. Finally,
comparison of the present rates of convergence for a
two-dimenaional problem with those for a
one-dimensional problem show that the convergence
rate {s {ndependent of the dimensionallty of the
problem when direct inversion i{s used. The normally
encountered slow-down in convergence rate in
nultidimensions as compared to one dimension arises
because of approximate factorization errors.
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The required boundary conditions for the present
problem include the specification of conditions on
the wall, on the axis of symmetry and on the upstream
and downstream boundaries. The boundary conditions
on the wall are the no-slip and adiabatic conditions.
These three conditions are supplemented by an
application of the normal momentum equation on the
wall which i{s applied by using one-sided differences
for the normal derivatives. At the center line,
symmetry conditions are applied. Because these
conditions are simple and their application 1is
straightforward, the details are omitted.

The boundary conditions at the inlet and exit
are of more interest. At high Reynolds numpers where
the flow {s predominantly inviscid, the use of
inviscid bouncary procedures appears appropriate. As
the Reynolds number |s decreased and viscous efflects T

Al

begin to dominate, the arguments for viscous boundary >;:.1
conditions become more compelling. The range of -i:a
demarcation beltween these two types of boundary -{ﬂ
conditions |s not {mmedlately apparent aiud \J\
conclusions are based on hindsight gained from ‘)ﬁ
numerical experimentation. :{
For the inviscid 1limit, we use the Method of . _J
Characteristics (MOC) procedure to determine the
_ number and type of boundary cond.tions. This theory
@
‘;b
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makes it clear that the variadle at the boundary
must be deterained from 2 combination of formal
boundary conditions augmented by a subset of the
equations of aotion. This rigorous understanding is
lost when viscous effects are present. In cases
where the inertial terms dominate, we drop noramal
diffuston gradients and apply the MOC procedures as
though the flow were inviscid. For the present
problem, these procedures corresponded to specifying
the stagnation temperature, the stagnation pressure,
and the flow angle at the inflow boundary and the
back preasure at the outllow dboundcary.

For low Reynolds numbers, the procedure at the
downstream boundary was changed to reflect the
dominance of the viscous terms, but the lack of a
rigorous procedure for determining the type of
boundary conditions leads to some ambiguity as to how
they are applied. The common assumption 18 that
there will be one additional boundary condlition for
each addition order of derivative, Thus, the four
poundary conditions of inviscid flow increase to
seven boundary conditions in viscous flow. In the
present calculations, the inviscid upstr-am boundary
conditions given above were retained (with the
argument that we were treating slug flow at the
inlet), and the downstream specification of pressure
was augmented by setting these second derivatives to
zero,

eg " Vee T Tge T ° (6)

so that four boundary conditions were specified at
the outflow boundary.

RESULTS AND DISCUSSION

All results presented are based on the direct
solution procedure. The comparlison of viscous and
inviscid boundary conditions is discussed first.
Intuftive reasoning would suggest that the lnviscid
boundary conditions would hold at very high Reynolds
numbers while the viscous boundary cond{tions would
provide accurate solutions at very low Reynolds
numbers. It would be hoped that both sets of
boundary conditions would provide similar results for
a range of intermediate Reynolds numbers. To
ascertain the behavior of these boundary conditions,
numerical experiments were run at Reynolds numbers of
5, 50 and 500. Iln the absence of buoyancy, both sets
of boundary conditions gave similar convergence and
similar solutions (the solutions were
indistinguishable on a plot) at all three Reynolds
numbers. In the presence of buoyancy, all attempts
with the inviscid boundary conditions diverged at
Reynolds numbers below S00 for high heat aqdftion,
but the viscous boundary conditions provided
effective convergence. AS is shown later, the effect
of buoyancy is almost negligible at Reynolds numbers
above 500 and becomes increasingly dominant at lower
Reynolds numbers. (Recall, Reynolds number 1s being
controlled by changing the velocity.)

Flow{ield results for the duct flow with heat
addition area given in Figs. 3-5. Resuylts are
presented for calculations with and without buoyancy,
the Prandt] number being held constant at 0.7 for all
cases,

Figures 3 and U present the temperature and
velocity profiles at the exit for the non-buoyant
case at Reynolas number of 5, 50 ang 500. 1In the
absence of buoyancy the heat source has a passive
behavior that only causes an expansion of the pas.
Low valocities abet the rapid diffusion of heat from
the centerline to the wall, so that the temperature

becomes essentlally uniform at a Reynolds number of 5.
At the higher Reynolds numbers, tne reduced diffusion
rates lead to steeper temperature gradients, with the
heating effect being localized to the center of the

flow. The velocity profiles on Fig. 8 corroborate
these inferences. The rapid diffusion at the low
Reynolds number case leads to a parabolie, fully
developed profile. The temperature gradients at
higher Reynolds numbers give rise to a fuller
profile, indicating a flow which i{s st{ll developing.

The corresponding profiles with buoyancy
included are shown {n Figs. 5 and 6. The buoyancy
effect {3 negligible at Reynolds number 500, with the
temperature and veloclty profiles being almost
identical to the non-buoyant case, as can be seen by
comparing Figs, 3 and S with Figs. 2 and 4. The
dramatic effect of buoyancy is, however, evident at
the two lowver Reynolds numbers., The center of the
flow is accelerated due to heating, and the
velocities at the centerline in dimensional form
become comparable in magnitude to the velocity at
Reynolds number 500.

The sharp decrease {n the rate of d{ffusion at
these lower Reynolds numbers {s reflected in the
modest temperature rise at the wall. In contrast to
the non-buoyant case, the temperature profile with
buoyancy at a Reynolds number of 5 1s now highly
non-uniform. The velocity profiles also differ quite
strongly from the fully developed profiles in the
non-buoyant flow. A fairly wide region near the wall
has very low velocities with a tendency for flow
reversal.

CONCLUSIONS

Time dependent numer{cal alpgorithms were tested
for low Mach number, low Reynolds number flows with
and without buoyancy. Results show that approximate
factorization technigues do not converge for cases of
interest. Stabllity analyses of these achemes
indicate that the reason for the impaired performance
is the hybrid AtZ error term that arises from the
product of viscous and inviscio derivatives.
Stability analyses for the unfactored algorithm
indicate unconditional stability for all time step
sizes, and suggest that very larpe At's will give
maximum convergence when direct inversjon procedures
are used. The robustness of the direct inversion
routine reinforces the (nference that the instability
encountered at low Reynolds numbers is because ol the
approximate factorization.

Calculations with both invisc{d and viscous
boundary conditions at the outflow boundary show a
broad region of overlap in the ranges of application
for the two procedures where buoyancy is absent. In
the presence of buovancy, the invisci{d boundary
conditions fajled to provide solutions !n Reynolds
number ranges where buoyant effects were significant.
The reason for this was traced to a tendency for
reentry flov near the wall at the exit plane.

Flowfield solutions show that buoyancy begins to
dominate at a Reynolds number of about 500. The body
force due to buoyancy causes the velcocity on the
centerline to {ncrease as compared with the
non-buoyant calculations and this increased speed
decreases the heat flux to the walls.
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